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801. Electronic Atom and Bond Poplatiom in Unsaturated 
Molecules. 

By V. W. MASLEN and C. A. COULSON. 

The general theory of conjugated systems with x electrons has been 
extended to include explicit account of overlap integrals commonly neglected. 
This links it with Mulliken's theory of electronic atom and bond populations. 
Contour integral and other expressions are obtained for the atom and bond 
polarizabilities analogous to those first introduced by Coulson and Longuet- 
Higgins. A series of general theorems concerning these polarizabilities is 
established. Some numerical calculations show that predictions of chemical 
and physical behaviour are not greatly affected by this new development. 

IN a series of five papersla-lc Coulson and Longuet-Higgins have applied the simple 
molecular-orbital (MO) theory, without overlap, to the x-electronic structure of conjugated 
systems. In these papers, a x-electron density qr is associated with atom r and a bond 
order 9, with bond rs. These two quantities, together with a set of polarizabilities, can 
describe many properties of conjugated systems. The great advantage of the treatment 
is that, despite its simplicity, it often yields excellent agreement with experiment. 

We now try to retain the simplicity and generality of the original treatment, but to 

1 Coulson and Longuet-Higgins, Proc. Roy. Soc., ( a )  1947, A ,  191. 39, (b )  1947, A ,  192. 16, 
(c) 1948, A ,  193, 447, ( d )  ibid., p. 456, (e) 1948, A ,  195, 188. 
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remove the assumption of zero overlap between adjacent x orbitals. When these overlap 
integrals are included our previous definitions of charge and bond order require modific- 
ation. So far as the charge distribution is concerned, Wheland2 showed that there is a 
simple way of re-allocating the total charge among the various atoms. This analysis was 
extended and generalised by Chirgwin and Co~lson ,~  who obtained certain general theorems 
analogous to those in refs. l a  and b, and by Lowdin: who gave an alternative definition of 
charge and bond order (but this omits any question of bond charges). Recent accurate 
X-ray analysis of molecular crystals has shown that there is a small tendency for charge 
to concentrate along the bond “lines.” It is convenient therefore to introduce bond 
charges as well as atom charges. In the valence-bond scheme it used to be customary to  
speak of “ charges de liaison.” In the molecular-orbital schemewith which alone we 
shall be concerned-Mulliken and McWeeny 6 * 7  defined a bond charge in terms of the 
coefficients of adjacent x orbitals and the corresponding overlap integral. Since the 
existence of this bond charge is directly dependent on the overlap integral, Mulliken 
suggested the use of the phrase ‘‘ overlap population.” The overlap population and the 
atomic population together account for all the electrons considered. 

Since there is evidence from X-ray scattering that these atom and bond charges possess 
rather more physical meaning than the extended atom charges in the theories of Chirgwin, 
Coulson, and Lowdin (these are identical with Mulliken’s “ gross atomic populations ”), 
it is interesting to see how far the general theory of Coulson and Longuet-Higgins can be 
applied to them. We now show that relations similar to  those of the earlier work can be 
obtained, both by means of certain new contour integrals and also in terms of the LCAO 
coefficients in the occupied molecular orbitals. Thus not only atom and bond charges, 
but also a series of polarizabilities, can be defined and related. We have also illustrated 
these relations by some detailed numerical calculations. 

When overlap integrals S,  are included, the algebra becomes rather difficult, and it 
is not always easy to  see what the calculations show, so it is often convenient to adopt 
Wheland’s approximation,2 that the ratio S,/pm for a given link between atoms r and s 
has a value ( k )  independent of the length of the link and dependent only on the two atoms 
at the ends of the link. This constant ratio of resonance integral and overlap integral 
cannot be rigorously correct, but Mulliken 8 has shown that it cannot be far wrong at  
ordinary distances and its use greatly simplifies calculations. For notation, see ref. l a ;  
some familiarity with the work in refs. l b ,  l c  is assumed. 

Since this work was completed, similar calculations have been published by Bassett 
and Brown.9* There are certain significant differences, usually leading to quite distinct 
formulae. Thus whereas we have dealt with the bond charge defined below in (4), Bassett 
and Brown omitted the overlap integral in their definition and so, although they refer 
to it as a bond-charge density, they have really been dealing with bond orders and not 
bond charges. For example, the sum of their atom and bond charges is not equal to the 
number of x electrons, and has no simple physical meaning. There are corresponding 
related differences which arise when the fundamental Wheland assumption (PIS = constant) 
is introduced in a polarizability calculation. The bond charge should change both because 
the bond order changes and also because the degree of overlap changes. We therefore 
believe that our analysis has more physical significance than theirs, though certain of the 
results are the same in the two theories. 

Wheland, J .  Amer. Chem. SOC., 1942, 64, 900. 
Chirgwin and Coulson, Proc. Roy. SOC., 1950, A ,  201, 196. 
Uwdin, J. Chem. Phys., 1950, 18, 365. 

McWeeny, ibid., 1951, 19, 1614. 
Idem, ibid., 1952, 20, 920. 
Mulliken, J .  Chim. phys., 1949, 46, 676. 

ti Mulliken, ibid.. 1956. 28, 1833, 1841, and refs. therein. 

* Bassett and Brown, Austral. J .  Chem., 1966, 9, 306. 
lo Idem, ibid., p. 316. 
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DEFINITIONS 
Let there be n distinct atomic orbitals (a.0.) +r (r = 1, 2 . . .  n), real and normalized, 

The j t h  of these may be from which the molecular orbitals (MO) are to be constructed. 
written in normalized form 

n 

r = l  
+j = 2 cd+r/Nj, 

where 

The electron density in such an orbital is 

In the theories of Wheland and of Chirgwin and Coulson it was usual to split this density 
into atomic densities, such that the fractional charge on atom r was 

Such a division preserves the total charge of unity. 
these for each x electron present, the gross atomic population could be obtained. 
the newer theory we have the alternative association represented by 

By addition of quantities such as 
But in 

. . . . . . .  qd = Crj2/Nj2 on atom r (1) 

qrS, j = 2cd CSj S,/Nj2 in bond rs (2) . . . . . .  
By summation over occupied orbitals we obtain the total atom charge 

where nj is the orbital occupation number 0, 1, or 2. When the molecule is in its ground 
state, nj = 2 for the lowest m orbitals (often, though not always, m = n/2), and nj = 0 
for all other orbitals. cnj is, of course, 
merely the total number of x electrons. 

We shall only consider such ground states. 

CONTOUR INTEGRAL EXPRESSIONS 
Let Ej be the energy of an electron in the MO $j (we reserve the symbol E, to denote, 

as in ref. l a ,  the corresponding energy when all overlap integrals are zero). Then 

A 3 detl& - ESml = 0, with pm = a,, S, = 1. 
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It follows that E is a function of ar, Pn, and S,. By differentiation 

From (5) and (6) we obtain 

and 
r r < e  

Summation of (7) and (8) over occupied levels then yields 

m 
where 8 = 2 c E j  

I - 1  

Proceeding similarly to ref. la ,  we obtain 

and 

where the contour E4 is the infinite semicircular contour shown in Fig. 1 
zero is so adjusted that 

El < E 2  <- - - -  < E m < O < E m + l  <- - -  -= En 

. . .  

. . .  

. . .  

. . .  

. .  

. . .  
and the energy 

This is usually satisfied by taking as energy zero the energy of an electron around a carbon 
atom. With alternant hydrocarbons this is always possible. To reduce these expressions 
further, we need to examine the limiting forms of their integrands for large E .  The 
expansion of the secular determinant is 

and S is the determinant of the overlap matrix. 

It follows that for large IEI 
S , ,  is the determinant obtained from S by striking out the r-th row and s-th column. 

so that the part af the integral in (9) which arises from the infinite semicircle is simply 
Sr,r/S. Thus 
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If we put S, = 0 for all r # s, the expressions (12) and (14) reduce to (38) and (41) of 
ref. l a ,  whereas (13) reduces to zero, as expected. 

FIG. 1. Integval contour in E- and z-s+ace. FIG. 2. Integral contour an x-space. 

THE WHELAND ASSUMPTION 
Our equations (12)-(14) become simpler if we adopt the Wheland assumption that all 

Such an assumption is particularly suitable Prs are proportional to Sm, and all u, = a. 
to the case of polycyclic hydrocarbons and polyene chains. Now 

where k = Sm/pls = a constant = S/F, where S and p arc standard integrals as, for 
example, in benzene. Thus 

A = detlp, - ES,I = (1 - kE)"D(x) . . . . . (15) 

where x = (E - a)/(1 - kE) . . . . . . . (16) 

and 

D(x) is the secular determinant that would be obtained by putting all overlap integrals 
equal to zero. As Wheland l1 has shown, the relation (16) is equivalent to 

E - ~ t = & f y / ( l + M S )  . . . . . . . (18) 

where y = P - Sa and M = x/p. We shall shortly use the latter relation. Its physical 
advantage is that it introduces the " revised " resonance integral y instead of the earlier 
one (3. y is invariant for a change in zero of energy, but p is not.12 In these terms 

with a similar equation for qIs. 
l1 Wheland, J .  Amer. Chem. SOL, 1941, 63, 2025. 
la MuUiken and Rieke, ibid., p. 1770. 
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If we now put z = E - 

We next alter the variable 
co-ordinates is that 

and Coulson : Electronic Atom and 
6: this becomes 

of integration from z to x. The relation between these two 

The contour % of Fig. 1 transforms into the contour 9 of Fig. 2, but since g and are 
negative, and S and M are positive for the occupied levels, and S < + in all cases of 
conventional x-electron chemistry, all the poles in the integrand lie either between E and A 
or on the negative real axis of x. We may therefore deform the contour so that it becomes 
the imaginary axis and the infinite semicircle to the right of it. The contribution to the 
integral from the semicircle is zero, and so 

Equations (20) and (21) have not been given before, but (22) has been obtained in a rather 
different way by de Heer.13 This completes our derivation of the formulae for atom 
charge, bond charge, and total x energy. 

ATOM AND BOND POLARIZABILITIES 
The definitions of these quantities follow as closely as possible those of ref. l a .  They 

are 

General expressions for these quantities can be written down at  once by partial differenti- 
ation of (12) and (13). But we shall find it convenient to discuss two particular cases: 
(a) We imagine the overlap integrals to  be kept constant in the course of the differentiations 
(23) ; (b) we use the Wheland assumption, from which it follows that SS, = (S,/p,)8& = 
kSp,. In making the differentiations, we must now use equations analogous to (6), 
allowing for this variation of S,. 

Case (a) : 8s  put equal to zero.-From (9), by analogy with eqn. (57) of ref. l a :  

By successive transformations, first to z and then to x: 

. . .  (24) 

l3 de Heer, Phil. Mag., 1950, 41, 370. 



[ 19571 

Similarly : 

Bond Populations in Unsaturated Molecules. 4047 

where the suffix zero denotes that the polarizabilities are calculated with complete neglect 
of all overlap integrals. 

Case (b) : Sp proportional to 8s.-The polarizabilities r r ,  and x,, defined in this case are 
independent of any variations of Bw, and are therefore still given by (24) and (25). A 
discussion similar to that in ref. l a  shows that the other two polarizabilities are given by 

In (28) and (29) the function, D,,, etc., are all functions of the variable iy, and 8: is the 
Kronecker " delta function." It is possible lU to derive alternative expressions for these 
polarizabilities in terms of the fundamental coefficients Crj in the various molecular orbitals, 
The expressions in case (a) follow at  once from eqns. (64)-(67), of ref. l a .  But instead of 
(28) and (29) we have 

SOME GENERAL THEOREMS 
Several theorems proved earlier la* can be modified to apply to our new atom and 

bond charges. 
(1) qr must be positive. (2) For alternant hydrocarbons, where we assume (i) equality 

of all ar, (ii) equality of all PIS for neighbour atoms, and neglect of all other p,, and (iii) 
p, proportional to S,, 

The results are given below without proof for a few important cases. 

q r + *  2 
s # r  

Xr,, and x,,= are both negative, whether we consider case (a) or case (6) of p. 4046. 

8 = 2 qrac + 22 q c s ( ~ m / S n ) -  
r r < s  

In  particular, for alternant hydrocarbons, as in theorem (2) : 

d = constant + k-lz 2 qrs 
C < E  

showing that the bond charge qm may be used as an indication of the contribution of the 
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bond rs to the total x-electron energy. We are indebted to Dr. J. A. R. Coope for pointing 
this out to us (see also Mulliken 5). 

(7) 2 q r  + C C q m  = 2 m  
r r < s  

(8) 2 rr,t + 2 rm,t = 0 for both cases (a) and ( b )  
r r < e  

(9) 2 xr, tu + 2 2 xm, tu = 0 for both cases (a) and ( b ) .  
r r < e  

NUMERICAL CALCULATIONS 
We have made some calculations for alternant hydrocarbons [with the approximations 

cited in Theorem (a)] but, in agreement with the energy calculations of de Heer l3 and 
others (cf. refs. in de Heer’s paper), we find that the agreement with experiment is generally 

FIG. 3. Atom and bond charge densities fov several polyacenes and linear polyenes ( S  = 114). 
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unchanged when overlap is included. There is practically no change in the correlation 
of free valence with localization energy, or of bond charge (as compared with bond order) 
with bond length. 

To give some idea of the magnitude of the atom and bond charges, we give in Fig. 3 
their values for linear polyenes and for some polyacenes. (All numerical results in 
the Figures and Tables were evaluated at S = &.) It is clear from this Figure that 
the alternant nature of these molecules is now apparent from both their atom and bond 
charges; this was not so with the simpler theory where the atom charges were all unity. 
I t  is difficult at present, however, to say whether the atom charge or Mulliken’s “ gross 
atomic population ” Perhaps, when the experi- 
mental data for the susceptibility to attack of the a- and p-positions of naphthalene become 
more definite, we shall be able to clear up this point. 

One difference in the predictions for zero overlap and for inclusion of S occurs in the 
value of the bond-bond self-polarizability. As implied in eqn. (29), this depends critically 
upon the relation of SS to Sp. In Tables 1 and 2 we give the values of the bond-bond 
polarizabiIities for benzene and naphthalene for the two cases (a) S = 0 and (b)  SS = k8p. 

is the better for studies of reactivity. 



[1957] Bond Po$ulations in Unsaturated Molecules. 
In Tables 3 and 4 we list the atom-bond polarizabilities for case (b).  For case (a) these are 
zero, but in case (b) some of these polarizabilities also are quite large. In Tables 1 - 4  the 
units are l/y. 

TABLE 1,  Mutual  bond polarizabilities in benzene. 
(a)  k p  = S, 6s = 0 

1-2 0.1204 0.2877 

3-4 0.0648 0.0625 

(b )  k p  = S,  k8p = 8s 
Bond 1-2 1-2 

2-3 - 0.1 0 1 9 - 0.093 1 

4-6 -0.0463 -0.0457 

TABLE 2. Mutual bond polarizabilities in  naphthalene. 

Bond 
10-9 
9-1 
1-2 
2-3 
3-4 
4-10 

10-5 
6-6 
6-7 
7-8 
8-9 

10- 
(a )  
0.127 

- 0.055 
0.033 

-0.021 
0.033 

- 0.055 
-0.055 

0.033 
-0.021 

0.033 
-0.055 

.9 
( b )  
0.231 

-0.048 
0.032 - 0.020 
0.032 

- 0.048 
- 0.048 

0.032 
- 0.020 

0,032 
-0.048 

Case ( a ) :  k p  = S, 6s = 0 
Case ( b ) :  k/3 = S, k8j? = 8s. 

9-1 1-2 

-0.065 -0.048 0.033 0.032 
0.144 0.261 -0.091 -0.083 

-0,091 -0.083 0.105 0.300 
0.056 0.054 -0-105; -0.095 

-0.037 -0.037 0.062 0.060 
0.048 0.046 -0.037 -0.037 

-0.013 -0.013 0.013 0.013 
0.013 0.013 -0*010 -0.010 

-0.023 -0.022 0.016 0.016 
0.030 0.029 -0.016 -0.016 

-0.073 -0.065 0.030 0.029 

( a )  ( b )  (a) (b) 

TABLE 3. Atom bond polarizabilities in benzene. 
Case ( b ) :  kp = S,  k8b = 6s 

Bond rs ....................................... 1-2 2-3 
*I,, a , .  .... ...................... ..... ... .... . -0.097 0.015 

( a )  
-0.021 

0.056 
-0.105 

0.148 
-0.105 

0.056 
- 0.023 

0.016 
-0.016 
-0.016 
-0.023 

3-4 
-0.008 

2-3 
(4  

-0.020 
0-054 

- 0.095 
0-283 

- 0.095 
0.054 

-0.022 
0.016 

-0.016 
0-016 

-0.022 

TABLE 4. Atom bond polarizabilities in naphthalene. 

Bond 
1-2 
2-3 
1-9 
&9 
4-10 
3-4 
9-10 
5-10 
5-6 
6-7 
7-8 

Case (b)  : 

-0.109 
0.021 

-0.089 
0.018 

- 0.005 
-0.012 

0.008 
0.000 

-0-001 
0.003 

-0.007 

Atom 1 
k b  = S, k&3 = SS 

2 
-0.102 
- 0.094 

0-015 
-0.003 
-0.009 

0.018 
-0.006 

0.005 
- 0.003 

0.000 
+o.ooo 

9 
0.011 

-0.006 
-0.074 
-0.074 

- 0.004 
-0.067 
- 0.009 
- 0.004 
-0.006 
0.012 

0-007 
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